energy given to hot space/area to be heated

M1.(a) The ratio work input

OR COP = Q_{iN} / W with Q_{iN} and W explained / defined \checkmark

It must be clear that $Q_{\mathbb{N}}$ is energy delivered <u>to the area to be</u> <u>heated / hot space</u>. Do not accept 'heat input' or any wording that is vague

1

1600 - 290 1600 = 0.82 / 82% (b) (i) $\eta_{\text{max}} =$ output power = 80 0.82 = 98 kW efficiency input power = fuel flow rate × CV = 98 kW fuel flow rate = 98000 / (49 × 10°) = 2.0 × 10-3 1 kg s⁻¹ OR 7.2 1 kg h⁻¹ 1 If first 2 steps in calculation are not seen and 80 kW used for input power give 1 mark for: fuel flow rate = $80000 / (49 \times 10^{\circ}) = 1.6 \times 10^{-3}$ The unit mark is an independent mark Q, $COP_{HP} = W$ (ii) So $Q_2 = 16 \times 2.6 = 41.6$ or 42 kW $Q_1 = 98 - 80 = 18 \text{ kW}$ Total $Q_1 + Q_2 = 60 \text{ kW}$ CE for Q_1 if incorrect input power from i is used, but NOT 80 -16 or 80 - 80

3

2

4

(iii) Heat pump delivers more heat energy than the electrical energy input \checkmark

Reason: it <u>adds</u> energy from external source to electrical energy input \checkmark Accept $Q_{\mathbb{N}} = W + Q_{OUT}$ if explained correctly e.g. by diagram

2

M2.(a) (A device in which) an input of work 🗸

(causes) heat to transfer from a cold space / reservoir to a hot space / reservoir \checkmark

(b) Heat transfer to hot space equals work done plus heat transfer from cold space / $Q_{IN} = W + Q_{OUT}$

Either written statement or expressed in symbols

so Q_{IN} (is always) > Q_{out} reason must be seen \checkmark

$$COP_{HP} = \frac{Q_{IN}}{W}$$
 and $COP_{REF} = \frac{Q_{OUT}}{W}$

So COP_{HP} > COP_{REF} ✓

The COP formulae are in formulae booklet so no marks for simply quoting them. i.e 2nd mark cannot be awarded without first mark.

OR

$$Q_{\text{IN}} = W + Q_{\text{OUT}} \checkmark$$

$$COP_{HP} \times W = +COP_{REF} \times W \text{ or } COP_{HP} = \frac{Q_{IN}}{W} = \frac{W + Q_{OUT}}{W}$$

So $COP_{HP} = 1 + COP_{REF}$

So COP_{HP} > COP_{REF}

[4]

2

МЗ.

(a) (refrigerator operates between a cold space and a hot space)

 Q_{out} is the energy removed from the fridge contents (or from the cold space) (1)

 Q_{in} is the energy given to the surroundings (or to outside the fridge/hot space) (1)

(b) (i) power for cooling ice = $5.5 \times (420 \times 10^3)/3600 = 642$ W (1)

 $P_{\rm in} = 642/4.5 = 142 \,\rm W$ (1)

or energy taken from ice in 1 hour = $5.5 \times 420 \times 10^{\circ}$ = 2310 kJ

$$W_{\rm in} = 2310/4.5 = 513 \text{ kJ}$$
 (1)
 $P_{\rm in} = \frac{513 \times 10^3}{3600} = 142 \text{ W}$ (1)

2

1

(ii) Q per s = 142 + 642
= 784 W (give CE) (1)
or
$$Q_{in} = Q_{out} + W_{in} = 513 \text{ kJ} + 2310 \text{ kJ} = 2820 \text{ kJ}$$

 2820×10^3

$$Q_{in} \text{ per s} = \frac{2620 \times 10}{3600} = 784 \text{ W}$$
 (1)

	[5]