M1.(a) The ratio work input

OR COP $=Q_{\mathbb{N}} / W$ with $Q_{\mathbb{N}}$ and W explained $/$ defined It must be clear that Q_{N} is energy delivered to the area to be heated / hot space. Do not accept 'heat input' or any wording that is vague

1600-290
(b) (i) $\eta_{\text {max }}=1600=0.82 / 82 \%$

$$
\text { output power }=\underline{80}
$$

input power $=$ efficiency $\quad 0.82=98 \mathrm{~kW} \quad \checkmark$
fuel flow rate $\times \mathrm{CV}=98 \mathrm{~kW}$
fuel flow rate $=98000 /\left(49 \times 10^{6}\right)=2.0 \times 10^{-3}$
$\mathrm{kg} \mathrm{s}^{-1}$
OR $7.2 \quad \checkmark \quad \mathrm{~kg} \mathrm{~h}^{-1}$
If first 2 steps in calculation are not seen and 80 kW used for input power give 1 mark for:
fuel flow rate $=80000 /\left(49 \times 10^{6}\right)=1.6 \times 10^{-3}$
The unit mark is an independent mark
(iii) Heat pump delivers more heat energy than the electrical energy input

Reason: it adds energy from external source to electrical energy input Accept $Q_{N}=W+Q_{\text {out }}$ if explained correctly e.g. by diagram

M2.(a) (A device in which) an input of work
(causes) heat to transfer from a cold space / reservoir to a hot space / reservoir \checkmark
(b) Heat transfer to hot space equals work done plus heat transfer from cold space $/ Q_{\text {IN }}=W+Q_{\text {our }}$

Either written statement or expressed in symbols
so $Q_{\text {IN }}$ (is always) $>Q_{\text {out }}$ reason must be seen \checkmark
$C O P_{\mathrm{HP}}=\frac{\mathrm{Q}_{\mathrm{IN}}}{W}$ and $C O P_{\mathrm{REF}}=\frac{\mathrm{Q}_{\text {OUT }}}{W}$
So $C O P_{\text {HP }}>C O P_{\text {REF }}$
The COP formulae are in formulae booklet so no marks for simply quoting them. i.e $2^{\text {nd }}$ mark cannot be awarded without first mark.

OR
$Q_{\text {IN }}=W+Q_{\text {out }} \quad \checkmark$
$C O P_{\mathrm{HP}} \times W=+C O P_{\mathrm{REF}} \times W$ or $C O P_{\mathrm{HP}}=\frac{Q_{1 \mathrm{~N}}}{W}=\frac{W+Q_{\text {OUT }}}{W}$
So $C O P_{\mathrm{HP}}=1+C O P_{\mathrm{REF}}$
So $C O P_{\text {HP }}>C O P_{\text {REF }}$

M3. (a) (refrigerator operates between a cold space and a hot space)
$Q_{\text {out }}$ is the energy removed from the fridge contents (or from the cold space) (1)
$Q_{i n}$ is the energy given to the surroundings (or to outside the fridge/hot space) (1)
(b) (i) power for cooling ice $=5.5 \times\left(420 \times 10^{3}\right) / 3600=642 \mathrm{~W}$ (1)

$$
P_{\text {in }}=642 / 4.5=142 \mathrm{~W}(1)
$$

or energy taken from ice in 1 hour $=5.5 \times 420 \times 10^{3}=2310 \mathrm{~kJ}$ $W_{\text {in }}=2310 / 4.5=513 \mathrm{~kJ}(1)$

$$
P_{\mathrm{in}}=\frac{513 \times 10^{3}}{3600}=142 \mathrm{~W}(1)
$$

(ii) Q per s $=142+642$
$=784 \mathrm{~W}$ (give CE) (1)
or $Q_{\mathrm{in}}=Q_{\mathrm{out}}+W_{\mathrm{in}}=513 \mathrm{~kJ}+2310 \mathrm{~kJ}=2820 \mathrm{~kJ}$
$Q_{\text {in }}$ per $s=\frac{2820 \times 10^{3}}{3600}=784 \mathrm{~W}(1)$
[5]

